Convergence, Unanimity and Disagreement in Majority Dynamics on Unimodular Graphs and Random Graphs
نویسندگان
چکیده
In majority dynamics, agents located at the vertices of an undirected simple graph update their binary opinions synchronously by adopting those of the majority of their neighbors. On infinite unimodular transitive graphs (e.g., Cayley graphs), when initial opinions are chosen from a distribution that is invariant with respect to the graph automorphism group, we show that the opinion of each agent almost surely either converges, or else eventually oscillates with period two; this has been known to hold for finite graphs, but not for all infinite graphs. On Erdős-Rényi random graphs with degrees Ω( √ n), we show that when initial opinions are chosen i.i.d. then agents all converge to the initial majority opinion, with constant probability. Conversely, on random 4-regular finite graphs, we show that with high probability different agents converge to different opinions.
منابع مشابه
Euclidean vs Graph Metric
The theory of sparse graph limits concerns itself with versions of local convergence and global convergence, see e.g. [41]. Informally, in local convergence we look at a large neighborhood around a random uniformly chosen vertex in a graph and in global convergence we observe the whole graph from afar. In this note rather than surveying the general theory we will consider some concrete examples...
متن کاملUnimodular random trees
We consider unimodular random rooted trees (URTs) and invariant forests in Cayley graphs. We show that URTs of bounded degree are the same as the law of the component of the root in an invariant percolation on a regular tree. We use this to give a new proof that URTs are sofic, a result of Elek. We show that ends of invariant forests in the hyperbolic plane converge to ideal boundary points. We...
متن کاملDynamics on Unimodular Random Graphs
This paper is centered on covariant dynamics on random graphs and random networks (marked graphs), which can be described as rules to navigate the vertices that are preserved by graph/network isomorphisms. Such dynamics are referred to as vertex-shifts here. Unimodular random networks can be heuristically described as networks seen from a vertex chosen uniformly at random, both in the finite an...
متن کاملProcesses on Unimodular Random Networks
We investigate unimodular random networks. Our motivations include their characterization via reversibility of an associated random walk and their similarities to unimodular quasi-transitive graphs. We extend various theorems concerning random walks, percolation, spanning forests, and amenability from the known context of unimodular quasi-transitive graphs to the more general context of unimodu...
متن کاملMatchings on infinite graphs
We prove that the local weak convergence of a sequence of graphs is enough to guarantee the convergence of their normalized matching numbers. The limiting quantity is described by a local recursion defined on the weak limit of the graph sequence. However, this recursion may admit several solutions, implying non-trivial long-range dependencies between the edges of a largest matching. We overcome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014